

INSTITUTIONAL CONTROLS TECHNOLOGY INFORMATION SHEET

Applicability as a method of vapor intrusion mitigation

Overview

This Interstate Technology & Regulatory Council (ITRC) Technology Information Sheet provides a general description of institutional controls (ICs), the various types of ICs, and the unique application of ICs to the vapor intrusion (VI) pathway. In many states, ICs may be used as the sole site remedy or in conjunction with other remedies, such as engineered controls (ECs). ICs are nonengineered instruments, such as administrative and legal controls, that help minimize the potential for human exposure to contamination and protect the integrity of the remedy.

ICs are a form of land use controls (LUCs) that provide protection from exposure to contaminants on a site. While ICs consist of administrative or legal restrictions on a site, LUCs can also use physical measures, which are called engineering controls or ECs (e.g., typical mitigation measures, physical barriers). In contrast to ECs, ICs include government controls, proprietary controls, enforcement or permit mechanisms, and informational devices. Planning that protects human health and the environment and uses all aspects of an IC life cycle (ITRC 2016) is essential for long-term success (e.g., a long-term stewardship plan). ICs can be applied to the VI pathway as a stand-alone remedy (for undeveloped lands or restricted use on developed land), as part of an overall remedy selection, or as a permit that requires ongoing monitoring and maintenance of the mitigation system.

ICs often work best if layered with other ICs, particularly if required for a long period of time. This provides some redundancy and increased levels of oversight (more eyes on the process) and may increase the long-term robustness of the overall IC program.

Types of Institutional Controls

ICs are divided into four categories:

- **Government controls**

Governmental controls rely on the regulatory powers of federal, state, or local government and include ordinances, building and development rules, environmental restrictions, and other restrictions on land or resource use. Common examples include zoning ordinances that limit or condition the type of land use that can occur in defined zones, groundwater use or well-drilling limitations via restrictive covenants, restrictions on reuse of contaminated soils generated from IC areas, and land development restrictions or regulations (e.g., requiring all new construction to have VI mitigation). Government controls can be enforced by the jurisdiction that enacted the control.

- **Proprietary controls**

Proprietary controls usually affect a single parcel of property and are considered proprietary or private because they are established by a private agreement between the landowner and an outside party. Proprietary controls are created under the authority of state real property law; thus, these agreements constitute a property right. These controls are attractive because they "run with the land"—meaning they endure as the affected property is sold to new owners. Proprietary controls are sometimes called "deed restrictions," which is a general term used to describe property rights that restrict the use of the property.

Institutional Controls Technology Information Sheet

For example, when indoor air concentrations are acceptable for commercial/industrial use but unacceptable for residential use, deed restrictions are put in place to ensure protection of human health by limiting the current and future use of the building to nonresidential activities only.

- **Enforcement or Permit Mechanisms**

Enforcement and permit mechanisms include government agency-issued permits, administrative orders, and enforcement agreements (such as consent decrees) that are enforceable by state or federal agencies. These tools can include requirements that restrict future land use. Rather than being a property right (as with proprietary controls), most enforcement and permit mechanisms are binding only to the signatories of the agreement (or the party named in the permit or order); therefore, the property restrictions do not bind subsequent owners (i.e., they do not “run with the land”). Environmental agency permits often include long-term stewardship requirements for periodic monitoring and maintenance inspections of VI mitigation systems. Records of Decision and Five-Year Reviews under the Comprehensive Environmental Response, Liability, and Accountability Act (CERCLA) are examples of these mechanisms.

- **Informational devices**

Informational devices provide information about risks from contamination. These devices are meant to inform and are generally not legally enforceable, although some states require real estate agents to report this information (e.g., a vapor intrusion mitigation system) to potential buyers. Common examples include the following:

- Deed notices—documents filed in public land records with the property deed
- State registries (hazardous waste sites)—contain information about contaminated properties
- Advisories—warn the public of potential risks associated with using contaminated land, surface water, or groundwater and are usually issued by public health agencies
- On-site notifications—signs placed at the site providing notification of the activities or actions taken to address a contaminated condition
- Community participation requirements—community involvement plans (also referred to as community engagement plans) and restoration advisory boards under CERCLA

Advantages

Using ICs for VI mitigation has the following advantages:

- They can be used during any stage of the cleanup process to accomplish various short- and long-term cleanup-related objectives.
- ICs help ensure the protectiveness of the remedy.
- They can include vital elements of response alternatives because they simultaneously influence and supplement the physical component of the remedy.
- ICs can be a suitable alternative when there is no funding sufficient for complete remediation of the contamination.

Limitations

Using ICs for VI mitigation has some limitations:

- ICs can be difficult to implement and enforce over time.

Institutional Controls Technology Information Sheet

- Some states or parties may not have adequate statutory authority to implement ICs.
- An IC may not be immediately apparent and may be difficult to identify, especially for those that establish building type, occupancy, or even prohibited activities on all or even a portion of the property.
- ICs may limit or prevent future development activities, possibly reducing property values.
- An IC may require a financial assurance component.
- Under some circumstances, ICs may not be removable and can only be amended, so the record will always be there.

Cost Considerations

The initial implementation/recording costs associated with ICs can range from as low as \$100 to \$50,000 or more, depending on the size of the site, the complexity of the requirements, the role of consultants/lawyers, and other issues. Likewise, many factors will affect the annual costs, including the type/frequency of inspections and related reporting requirements stipulated in the ICs. The Association of State and Territorial Solid Waste Management Officials (ASTSWMO) developed an IC costing tool (ASTSWMO 2012) designed to assist state agencies with the process of estimating the full scale of long-term IC stewardship costs. Also included in the Resources section is a similar planning tool from the U.S. Environmental Protection Agency (USEPA) as it pertains to brownfield sites (USEPA 2011).

Occupant, Community, and Stakeholder Considerations

Carefully designed public outreach is an essential part of any aspect of the VI response. This includes ICs, informational devices, and remedial actions. ICs may be established to ensure the occupants, owners, and managers are informed and involved as partners in the long-term management of vapor intrusion mitigation systems and, if necessary, monitoring of the affected building. For more details see [Chapter 3: Community Engagement](#).

REFERENCES

ASTSWMO. 2012. "State Conceptual Framework to Estimate Associated Cost." August 9. <https://astswmo.org/state-conceptual-framework-to-estimate-associated-cost/>.

ITRC. 2016. *Long-Term Contaminant Management Using Institutional Controls*. Interstate Technology & Regulatory Council. <https://itrcweb.org/long-term-stewardship-ic-guide/>.

USEPA. 2011. *Institutional Controls: A Guide to Planning, Implementing, Maintaining, and Enforcing Institutional Controls at Contaminated Sites*. EPA-540-R-09-001. <https://clu-in.org/conf/tio/NARPMPresents10/PIME-IC-Guidance-Master-Copy-11.9.2011.pdf>.